Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Coherent quantum phase slip

Identifieur interne : 001F30 ( Main/Repository ); précédent : 001F29; suivant : 001F31

Coherent quantum phase slip

Auteurs : RBID : Pascal:12-0239193

Descripteurs français

English descriptors

Abstract

A hundred years after the discovery of superconductivity, one fundamental prediction of the theory, coherent quantum phase slip (CQPS), has not been observed. CQPS is a phenomenon exactly dual' to the Josephson effect; whereas the latter is a coherent transfer of charges between superconducting leads2,3, the former is a coherent transfer of vortices or fluxes across a superconducting wire. In contrast to previously reported observations4-8 of incoherent phase slip, CQPS has been only a subject of theoretical study9-12. Its experimental demonstration is made difficult by quasiparticle dissipation due to gapless excitations in nanowires or in vortex cores. This difficulty might be overcome by using certain strongly disordered superconductors near the superconductor-insulator transition. Here we report direct observation of CQPS in a narrow segment of a superconducting loop made of strongly disordered indium oxide; the effect is made manifest through the superposition of quantum states with different numbers of flux quanta". As with the Josephson effect, our observation should lead to new applications in superconducting electronics and quantum metrology1,10,11.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0239193

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Coherent quantum phase slip</title>
<author>
<name sortKey="Astafiev, O V" uniqKey="Astafiev O">O. V. Astafiev</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>NECGreen Innovation Research Laboratories, 34 Miyukigaoka</s1>
<s2>Tsukuba, Ibaraki, 305-8501</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Tsukuba, Ibaraki, 305-8501</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>The Institute of Physical and Chemical Research (RIKEN), 34 Miyukigaoka</s1>
<s2>Tsukuba, Ibaraki, 305-8501</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Tsukuba, Ibaraki, 305-8501</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ioffe, L B" uniqKey="Ioffe L">L. B. Ioffe</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Center for Materials Theory, Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road</s1>
<s2>Piscataway, New Jersey 08854</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Piscataway, New Jersey 08854</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kafanov, S" uniqKey="Kafanov S">S. Kafanov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>NECGreen Innovation Research Laboratories, 34 Miyukigaoka</s1>
<s2>Tsukuba, Ibaraki, 305-8501</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Tsukuba, Ibaraki, 305-8501</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>The Institute of Physical and Chemical Research (RIKEN), 34 Miyukigaoka</s1>
<s2>Tsukuba, Ibaraki, 305-8501</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Tsukuba, Ibaraki, 305-8501</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pashkin, Yu A" uniqKey="Pashkin Y">Yu. A. Pashkin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>NECGreen Innovation Research Laboratories, 34 Miyukigaoka</s1>
<s2>Tsukuba, Ibaraki, 305-8501</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Tsukuba, Ibaraki, 305-8501</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>The Institute of Physical and Chemical Research (RIKEN), 34 Miyukigaoka</s1>
<s2>Tsukuba, Ibaraki, 305-8501</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Tsukuba, Ibaraki, 305-8501</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Department of Physics, Lancaster University</s1>
<s2>Lancaster LA1 4YB</s2>
<s3>GBR</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Lancaster LA1 4YB</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Arutyunov, K Yu" uniqKey="Arutyunov K">K. Yu. Arutyunov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>University of Jyväskylä, Department of Physics, PB 35</s1>
<s2>40014 Jyväskylä</s2>
<s3>FIN</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Finlande</country>
<wicri:noRegion>40014 Jyväskylä</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="06">
<s1>Moscow State University, Institute of Nuclear Physics, Leninskie gory, GSP-1</s1>
<s2>Moscow 119899</s2>
<s3>RUS</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shahar, D" uniqKey="Shahar D">D. Shahar</name>
<affiliation wicri:level="1">
<inist:fA14 i1="07">
<s1>Department of Condensed Matter Physics, Weizmann Institute of Science</s1>
<s2>Rehovot 76100</s2>
<s3>ISR</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Israël</country>
<wicri:noRegion>Rehovot 76100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cohen, O" uniqKey="Cohen O">O. Cohen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="07">
<s1>Department of Condensed Matter Physics, Weizmann Institute of Science</s1>
<s2>Rehovot 76100</s2>
<s3>ISR</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Israël</country>
<wicri:noRegion>Rehovot 76100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tsai, J S" uniqKey="Tsai J">J. S. Tsai</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>NECGreen Innovation Research Laboratories, 34 Miyukigaoka</s1>
<s2>Tsukuba, Ibaraki, 305-8501</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Tsukuba, Ibaraki, 305-8501</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>The Institute of Physical and Chemical Research (RIKEN), 34 Miyukigaoka</s1>
<s2>Tsukuba, Ibaraki, 305-8501</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Tsukuba, Ibaraki, 305-8501</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0239193</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0239193 INIST</idno>
<idno type="RBID">Pascal:12-0239193</idno>
<idno type="wicri:Area/Main/Corpus">001C99</idno>
<idno type="wicri:Area/Main/Repository">001F30</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0028-0836</idno>
<title level="j" type="abbreviated">Nature : (Lond.)</title>
<title level="j" type="main">Nature : (London)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Excitation</term>
<term>Josephson effect</term>
<term>Quantum theory</term>
<term>Quasiparticles</term>
<term>Superconductivity</term>
<term>Superconductors</term>
<term>Vortices</term>
<term>Vorticity transfer</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Supraconductivité</term>
<term>Théorie quantique</term>
<term>Effet Josephson</term>
<term>Tourbillon</term>
<term>Quasiparticule</term>
<term>Excitation</term>
<term>Supraconducteur</term>
<term>Transfert vorticité</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A hundred years after the discovery of superconductivity, one fundamental prediction of the theory, coherent quantum phase slip (CQPS), has not been observed. CQPS is a phenomenon exactly dual' to the Josephson effect; whereas the latter is a coherent transfer of charges between superconducting leads
<sup>2,3</sup>
, the former is a coherent transfer of vortices or fluxes across a superconducting wire. In contrast to previously reported observations
<sup>4-8</sup>
of incoherent phase slip, CQPS has been only a subject of theoretical study
<sup>9-12</sup>
. Its experimental demonstration is made difficult by quasiparticle dissipation due to gapless excitations in nanowires or in vortex cores. This difficulty might be overcome by using certain strongly disordered superconductors near the superconductor-insulator transition. Here we report direct observation of CQPS in a narrow segment of a superconducting loop made of strongly disordered indium oxide; the effect is made manifest through the superposition of quantum states with different numbers of flux quanta". As with the Josephson effect, our observation should lead to new applications in superconducting electronics and quantum metrology
<sup>1,10,11</sup>
.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0028-0836</s0>
</fA01>
<fA02 i1="01">
<s0>NATUAS</s0>
</fA02>
<fA03 i2="1">
<s0>Nature : (Lond.)</s0>
</fA03>
<fA05>
<s2>484</s2>
</fA05>
<fA06>
<s2>7394</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Coherent quantum phase slip</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ASTAFIEV (O. V.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>IOFFE (L. B.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KAFANOV (S.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>PASHKIN (Yu. A.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ARUTYUNOV (K. Yu.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>SHAHAR (D.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>COHEN (O.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>TSAI (J. S.)</s1>
</fA11>
<fA14 i1="01">
<s1>NECGreen Innovation Research Laboratories, 34 Miyukigaoka</s1>
<s2>Tsukuba, Ibaraki, 305-8501</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>The Institute of Physical and Chemical Research (RIKEN), 34 Miyukigaoka</s1>
<s2>Tsukuba, Ibaraki, 305-8501</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Center for Materials Theory, Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road</s1>
<s2>Piscataway, New Jersey 08854</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Physics, Lancaster University</s1>
<s2>Lancaster LA1 4YB</s2>
<s3>GBR</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>University of Jyväskylä, Department of Physics, PB 35</s1>
<s2>40014 Jyväskylä</s2>
<s3>FIN</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>Moscow State University, Institute of Nuclear Physics, Leninskie gory, GSP-1</s1>
<s2>Moscow 119899</s2>
<s3>RUS</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="07">
<s1>Department of Condensed Matter Physics, Weizmann Institute of Science</s1>
<s2>Rehovot 76100</s2>
<s3>ISR</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA20>
<s1>355-358</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>142</s2>
<s5>354000509285560170</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>30 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0239193</s0>
</fA47>
<fA60>
<s1>P</s1>
<s3>CR</s3>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nature : (London)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>A hundred years after the discovery of superconductivity, one fundamental prediction of the theory, coherent quantum phase slip (CQPS), has not been observed. CQPS is a phenomenon exactly dual' to the Josephson effect; whereas the latter is a coherent transfer of charges between superconducting leads
<sup>2,3</sup>
, the former is a coherent transfer of vortices or fluxes across a superconducting wire. In contrast to previously reported observations
<sup>4-8</sup>
of incoherent phase slip, CQPS has been only a subject of theoretical study
<sup>9-12</sup>
. Its experimental demonstration is made difficult by quasiparticle dissipation due to gapless excitations in nanowires or in vortex cores. This difficulty might be overcome by using certain strongly disordered superconductors near the superconductor-insulator transition. Here we report direct observation of CQPS in a narrow segment of a superconducting loop made of strongly disordered indium oxide; the effect is made manifest through the superposition of quantum states with different numbers of flux quanta". As with the Josephson effect, our observation should lead to new applications in superconducting electronics and quantum metrology
<sup>1,10,11</sup>
.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70D</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Supraconductivité</s0>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Superconductivity</s0>
<s5>26</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Théorie quantique</s0>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Quantum theory</s0>
<s5>27</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Effet Josephson</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Josephson effect</s0>
<s5>28</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Tourbillon</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Vortices</s0>
<s5>29</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Quasiparticule</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Quasiparticles</s0>
<s5>30</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Excitation</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Excitation</s0>
<s5>31</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Supraconducteur</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Superconductors</s0>
<s5>32</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Transfert vorticité</s0>
<s5>33</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Vorticity transfer</s0>
<s5>33</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Transferencia vorticidad</s0>
<s5>33</s5>
</fC03>
<fN21>
<s1>184</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F30 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001F30 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0239193
   |texte=   Coherent quantum phase slip
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024